close
標題:

免費註冊體驗

 

此文章來自奇摩知識+如有不便請留言告知

Circle

發問:

https://i.na.cx/93b0m1.png 1. In the figure, chord BA and chord DC are produced to meet at P. If PA = 4, AB = 5 and PC = 5, then CD = ? https://i.na.cx/Voe6qa.png 2. DB tangent to the circle, AC = 4, CD = 2. Find AB which is diameter

最佳解答:

1. In Δs PAC, PDB ∠PAC=∠PDB ?? (ext.=int. opp., cyclic quad.) ∠PCA=∠PBD ?? (ext.=int. opp., cyclic quad.) ∴ ΔPAC~ΔPDB ? (AAA) ie. PA/PD=PC/PB ==> 4/(5+CD)=5/(4+5) ==> CD=4*9/5-5 ∴ CD=2.2 (units) 2. Join BC, as AB is a diameter, so ∠ACB=90° ???? (angle in semi-circle) And, DB is a tangle, so ∠ABD=90° ???? (tangent ⊥ radius) In Δs ACB, ABD ∠A=∠A ????? (common) ∠ACB=∠ABD ?? (=90°, proved) ∴ ΔACB~ΔABD ? (AAA) ie. AC/AB=AB/AD ==> AB2=AC*AD=4*(4+2)=24 ∴ AB=2√6 (units)

其他解答:

1. Alternative method : PA × PB = PC × PD (intersecting chord) 4 × (4 + 5) = 5 × (5 + CD) 5 + CD = 7.2 CD = 2.2 ...... (ans) 2014-09-17 13:13:50 補充: 2. Alternative method : AB2 = AD2 - BD2 (Pythagorean theorem) But BD2 = CD × DA (intersecting chords) Hence, AB2 = AD2 - CD × DA AB2 = (2 + 4)2 - 2 × (2 + 4) AB = 2√6 ...... (ans)
arrow
arrow
    文章標籤
    文章 奇摩 P.
    全站熱搜
    創作者介紹
    創作者 pxrnjl7 的頭像
    pxrnjl7

    百科全書

    pxrnjl7 發表在 痞客邦 留言(0) 人氣()